Deux méthodes différentes donnent des estimations, elles aussi, différentes de la constante de Hubble alors qu’elles ne le devraient pas. Une troisième méthode est en cours de développement, basée sur les quasars. Elle pourrait introduire une nouvelle physique.

Lorsque l’on appliquait les lois de la mécanique céleste de Newton au calcul précis de l’orbite de la planète Mercure, il restait un léger mouvement anormal concernant la précession de cette orbite. Et cela, malgré la prise en compte de l’influence gravitationnelle de plusieurs planètes. Aujourd’hui, on sait rétrospectivement que cela signalait l’existence d’une nouvelle physique, celle de la relativité générale. Mais, cela aurait pu s’expliquer aussi par la présence d’une planète encore non détectée entre le Soleil et Mercure. Ou plus simplement, parce que la forme de notre étoile était plus éloignée de celle d’une sphère en équilibre hydrostatique du fait de sa rotation ; ce qui changeait le calcul des forces gravitationnelles qu’elle exerçait sur Mercure. Dans ces deux derniers cas, la physique ne nécessitait aucune révolution.

Actuellement confrontés à un problème similaire dans le domaine de la cosmologie, les astrophysiciens sont perplexes depuis quelques années. Nous savons que l’Univers est en expansion selon la loi de Hubble-Lemaître, ce qui fait intervenir la fameuse constante de Hubble (laquelle n’en est pas vraiment une, mais c’est un autre sujet). Cette constante, donnant le rapport entre le décalage spectral d’une galaxie et sa distance à la Voie lactée, peut s’estimer de plusieurs façons. On peut se servir des supernovae SN Ia, comme l’on fait les découvreurs de l’expansion accélérée du cosmos observable, ou encore se servir des mesures du rayonnement fossile fournie par la mission Planck.

Une vidéo expliquant le principe de la démultiplication des images d’un quasar par le champ de gravitation d’une galaxie déviant les rayons lumineux. © Royal Astronomical Society, ESA, Nasa

Dans le premier cas, se trouve une valeur d’environ 72 km par seconde par mégaparsec (un mégaparsec représente environ 3,3 millions d’années-lumière) ; mais, dans le second cas, se révèle une valeur d’environ 67 km par seconde par mégaparsec. Bien que tenant compte des incertitudes, et en vérifiant les biais et des erreurs possibles, les équipes travaillant sur ces deux méthodes de mesure, démontrent qu’il existe une tension entre ces deux valeurs. Cette tension suggère, soit une erreur restée non identifiée par l’une des équipes ; soit, et c’est plus intéressant, l’existence d’une nouvelle physique modifiant les prédictions basées initialement sur le modèle cosmologique standard, avec de la matière noire froide et une vraie constante cosmologique.

Des lentilles gravitationnelles pour mesurer la constante de Hubble

Pour tenter d’y voir plus clair, et depuis quelques temps, une autre méthode est utilisée pour mesurer la constante de Hubble en se servant de l’effet de lentille gravitationnelle sur des quasars lointains. Des quasars observés, et dont l’image était quadruplée par cet effet de lentille, avaient été ainsi mis à contribution. Récemment, et comme le prouve un article sur arXiv, la méthode a également été testée avec un quasar dédoublé par le même effet  : SDSS J1206+4332. Le résultat d’une observation unitaire est moins précis ; cependant, les quasars « doubles » sont plus nombreux que de quasars « quadruples » ; à terme, une information plus significative devrait pouvoir s’obtenir en multipliant les observations.

Pour comprendre l’idée derrière la méthode, rappelons qu’il y a de sérieuses raisons de penser que les quasars sont en réalité des trous noirs supermassifs, rendus très lumineux par l’accrétion d’importantes quantités de matière. Leur luminosité fluctue en raison même de la physique des processus liés à l’accrétion et à la génération de rayonnement. En raison de son champ de gravitation, une galaxie massive qui s’interpose entre ce rayonnement et nous, va donc dévier les rayons lumineux, produisant un effet de lentille, de sorte qu’ils ne suivront pas les mêmes chemins et ne parcourront pas les mêmes distances.

Qualitativement et quantitativement, les temps de parcours sont affectés par l’expansion de l’univers observable. Et, in fine, l’effet de lentille gravitationnelle va se manifester par des images d’un même quasar qui vont varier en luminosité avec des décalages dans le temps. Il est donc possible de déduire de ces décalages, une vitesse d’expansion et par conséquent, la constante de Hubble.

Le désaccord persiste 

C’est donc cette méthode qui a été appliquée au quasar SDSS J1206+4332 par la collaboration H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring). Dans le cadre de ce projet international en cosmologie, mené par l’École polytechnique fédérale de Lausanne (EPFL) et le Max Planck Institute, les données ont été obtenues avec les télescopes Hubble, Gemini, Keck ainsi qu’avec le programme COSMOGRAIL (COSmological MOnitoring of GRAvItational Lenses) qui utilise principalement le télescope suisse de 1,2 mètre situé dans les Andes chiliennes, à proximité des observatoires de l’ESO.

Les chercheurs ont obtenu comme résultat préliminaire, là aussi, une valeur d’environ 72 km par seconde par mégaparsec, tendant à confirmer la mesure obtenue avec les supernovae SN Ia. Un désaccord d’environ 8 % sur la constante de Hubble persiste donc. Nul ne sait encore vraiment ce que cela signifie…

Ce qu’il faut retenir

  • La valeur de la constante de Hubble renseigne sur l’expansion de l’Univers observable et, indirectement, sur la nature de l’énergie noire censée l’accélérer.
  • L’étude rigoureuse du rayonnement fossile avec le satellite Planck fournit une valeur, censée être solide, de la constante de Hubble : environ 67 km par seconde par mégaparsec.
  • Tout aussi rigoureuse, une autre étude avec les supernovae SN Ia fournit une valeur 72 km par seconde par mégaparsec, que semble confirmer une méthode, en cours d’application, d’étude des quasars avec l’effet de lentille gravitationnelle.
  • Sauf erreur dans ces méthodes et faute de trouver un accord, il faudra peut-être en conclure que l’on avait négligé jusqu’ici les signes d’une nouvelle physique.
Intéressé par ce que vous venez de lire ?

Abonnez-vous à la lettre d’information La quotidienne : nos dernières actualités du jour.
Cela vous intéressera aussi

Interview : pourquoi l’univers est-il en expansion ?  Avec la découverte de l’expansion de l’univers sont nées d’autres questions : à quelle vitesse cette expansion se produit-elle ? y a-t-il accélération ? ou bien ralentissement ? Futura-Sciences a interrogé Aurélien Barrau, astrophysicien spécialisé en cosmologie et auteur du livre Des univers multiples. 

À voir aussi : 

Leave a Reply